zhongziso种子搜
首页
功能
磁力转BT
BT转磁力
使用教程
免责声明
关于
zhongziso
搜索
[FreeCourseSite.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
magnet:?xt=urn:btih:2c2ece5a1762052507c7237eff15c94a55f65c72&dn=[FreeCourseSite.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接详情
Hash值:
2c2ece5a1762052507c7237eff15c94a55f65c72
点击数:
258
文件大小:
1.19 GB
文件数量:
81
创建日期:
2020-12-5 00:08
最后访问:
2024-12-22 10:39
访问标签:
FreeCourseSite
com
Udemy
-
Artificial
Intelligence
Reinforcement
Learning
in
Python
文件列表详情
1. Introduction and Outline/1. Introduction and outline.mp4 10.1 MB
1. Introduction and Outline/2. What is Reinforcement Learning.mp4 21.95 MB
1. Introduction and Outline/3. Where to get the Code.mp4 4.46 MB
1. Introduction and Outline/4. Strategy for Passing the Course.mp4 9.48 MB
2. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.mp4 6.48 MB
2. Return of the Multi-Armed Bandit/2. Epsilon-Greedy.mp4 2.79 MB
2. Return of the Multi-Armed Bandit/3. Updating a Sample Mean.mp4 2.17 MB
2. Return of the Multi-Armed Bandit/4. Comparing Different Epsilons.mp4 8.02 MB
2. Return of the Multi-Armed Bandit/5. Optimistic Initial Values.mp4 5.13 MB
2. Return of the Multi-Armed Bandit/6. UCB1.mp4 8.23 MB
2. Return of the Multi-Armed Bandit/7. Bayesian Thompson Sampling.mp4 51.85 MB
2. Return of the Multi-Armed Bandit/8. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp4 10.57 MB
2. Return of the Multi-Armed Bandit/9. Nonstationary Bandits.mp4 7.49 MB
3. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.mp4 6.11 MB
3. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.mp4 9.44 MB
3. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.mp4 8.32 MB
3. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.mp4 12.72 MB
3. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.mp4 4.23 MB
3. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.mp4 103.72 MB
3. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.mp4 5.04 MB
3. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.mp4 4.42 MB
3. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.mp4 9.79 MB
3. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.mp4 10.05 MB
3. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.mp4 9.01 MB
4. Markov Decision Proccesses/1. Gridworld.mp4 3.36 MB
4. Markov Decision Proccesses/2. The Markov Property.mp4 7.18 MB
4. Markov Decision Proccesses/3. Defining and Formalizing the MDP.mp4 6.64 MB
4. Markov Decision Proccesses/4. Future Rewards.mp4 5.17 MB
4. Markov Decision Proccesses/5. Value Function Introduction.mp4 19.72 MB
4. Markov Decision Proccesses/6. Value Functions.mp4 8.28 MB
4. Markov Decision Proccesses/7. Bellman Examples.mp4 87.12 MB
4. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.mp4 3.24 MB
4. Markov Decision Proccesses/9. MDP Summary.mp4 2.42 MB
5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4 4.83 MB
5. Dynamic Programming/10. Dynamic Programming Summary.mp4 8.32 MB
5. Dynamic Programming/2. Gridworld in Code.mp4 11.46 MB
5. Dynamic Programming/3. Iterative Policy Evaluation in Code.mp4 12.07 MB
5. Dynamic Programming/4. Policy Improvement.mp4 4.54 MB
5. Dynamic Programming/5. Policy Iteration.mp4 3.14 MB
5. Dynamic Programming/6. Policy Iteration in Code.mp4 7.62 MB
5. Dynamic Programming/7. Policy Iteration in Windy Gridworld.mp4 9.1 MB
5. Dynamic Programming/8. Value Iteration.mp4 6.19 MB
5. Dynamic Programming/9. Value Iteration in Code.mp4 4.9 MB
6. Monte Carlo/1. Monte Carlo Intro.mp4 4.98 MB
6. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4 8.76 MB
6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4 7.92 MB
6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4 7.81 MB
6. Monte Carlo/5. Monte Carlo Control.mp4 9.26 MB
6. Monte Carlo/6. Monte Carlo Control in Code.mp4 10.17 MB
6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4 4.63 MB
6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4 8.06 MB
6. Monte Carlo/9. Monte Carlo Summary.mp4 5.71 MB
7. Temporal Difference Learning/1. Temporal Difference Intro.mp4 2.72 MB
7. Temporal Difference Learning/2. TD(0) Prediction.mp4 5.82 MB
7. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4 5.32 MB
7. Temporal Difference Learning/4. SARSA.mp4 8.21 MB
7. Temporal Difference Learning/5. SARSA in Code.mp4 8.82 MB
7. Temporal Difference Learning/6. Q Learning.mp4 4.85 MB
7. Temporal Difference Learning/7. Q Learning in Code.mp4 5.42 MB
7. Temporal Difference Learning/8. TD Summary.mp4 3.94 MB
8. Approximation Methods/1. Approximation Intro.mp4 6.46 MB
8. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4 6.47 MB
8. Approximation Methods/3. Features.mp4 6.25 MB
8. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4 2.85 MB
8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4 6.57 MB
8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4 8.35 MB
8. Approximation Methods/7. Semi-Gradient SARSA.mp4 4.7 MB
8. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4 10.61 MB
8. Approximation Methods/9. Course Summary and Next Steps.mp4 13.24 MB
9. Appendix/1. What is the Appendix.mp4 5.45 MB
9. Appendix/10. What order should I take your courses in (part 1).mp4 29.32 MB
9. Appendix/11. What order should I take your courses in (part 2).mp4 37.62 MB
9. Appendix/12. Where to get discount coupons and FREE deep learning material.mp4 4.03 MB
9. Appendix/2. Windows-Focused Environment Setup 2018.mp4 186.38 MB
9. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.92 MB
9. Appendix/4. How to Code by Yourself (part 1).mp4 24.53 MB
9. Appendix/5. How to Code by Yourself (part 2).mp4 14.81 MB
9. Appendix/6. How to Succeed in this Course (Long Version).mp4 18.31 MB
9. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 38.95 MB
9. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78.33 MB
9. Appendix/9. Python 2 vs Python 3.mp4 7.83 MB
其他位置