zhongziso种子搜
首页
功能
磁力转BT
BT转磁力
使用教程
免责声明
关于
zhongziso
搜索
[FreeCoursesOnline.Me] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]
magnet:?xt=urn:btih:8ef76cbab81900d4d663641cb4f159b74fbcb062&dn=[FreeCoursesOnline.Me] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]
磁力链接详情
Hash值:
8ef76cbab81900d4d663641cb4f159b74fbcb062
点击数:
234
文件大小:
2.3 GB
文件数量:
82
创建日期:
2020-6-5 18:52
最后访问:
2024-12-27 21:50
访问标签:
FreeCoursesOnline
Me
PacktPub
-
Master
Deep
Learning
with
TensorFlow
2
0
in
Python
2019
Video
文件列表详情
01.Welcome! Course introduction/0101.Meet your instructors and why you should study machine learning.mp4 84.75 MB
01.Welcome! Course introduction/0102.What does the course cover.mp4 39.08 MB
02.Introduction to neural networks/0201.Introduction to neural networks.mp4 45.75 MB
02.Introduction to neural networks/0202.Training the model.mp4 26.82 MB
02.Introduction to neural networks/0203.Types of machine learning.mp4 40.85 MB
02.Introduction to neural networks/0204.The linear model.mp4 26.04 MB
02.Introduction to neural networks/0205.The linear model. Multiple inputs.mp4 23.69 MB
02.Introduction to neural networks/0206.The linear model. Multiple inputs and multiple outputs.mp4 42.21 MB
02.Introduction to neural networks/0207.Graphical representation.mp4 21.96 MB
02.Introduction to neural networks/0208.The objective function.mp4 17.7 MB
02.Introduction to neural networks/0209.L2-norm loss.mp4 21.4 MB
02.Introduction to neural networks/0210.Cross-entropy loss.mp4 33.4 MB
02.Introduction to neural networks/0211.One parameter gradient descent.mp4 56.41 MB
02.Introduction to neural networks/0212.N-parameter gradient descent.mp4 57.61 MB
03.Setting up the working environment/0301.Setting up the environment - An introduction - Do not skip, please!.mp4 6.91 MB
03.Setting up the working environment/0302.Why Python and why Jupyter.mp4 34.69 MB
03.Setting up the working environment/0303.Installing Anaconda.mp4 31.33 MB
03.Setting up the working environment/0304.The Jupyter dashboard - part 1.mp4 9.24 MB
03.Setting up the working environment/0305.The Jupyter dashboard - part 2.mp4 20.37 MB
03.Setting up the working environment/0306.Installing TensorFlow 2.mp4 51.17 MB
04.Minimal example - your first machine learning algorithm/0401.Minimal example - part 1.mp4 36.36 MB
04.Minimal example - your first machine learning algorithm/0402.Minimal example - part 2.mp4 23.74 MB
04.Minimal example - your first machine learning algorithm/0403.Minimal example - part 3.mp4 20.43 MB
04.Minimal example - your first machine learning algorithm/0404.Minimal example - part 4.mp4 30.41 MB
05.TensorFlow - An introduction/0501.TensorFlow outline.mp4 41.97 MB
05.TensorFlow - An introduction/0502.TensorFlow 2 intro.mp4 37.84 MB
05.TensorFlow - An introduction/0503.A Note on Coding in TensorFlow.mp4 8.14 MB
05.TensorFlow - An introduction/0504.Types of file formats in TensorFlow and data handling.mp4 13.28 MB
05.TensorFlow - An introduction/0505.Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4 32.94 MB
05.TensorFlow - An introduction/0506.Interpreting the result and extracting the weights and bias.mp4 31.38 MB
05.TensorFlow - An introduction/0507.Customizing your model.mp4 21.62 MB
06.Going deeper Introduction to deep neural networks/0601.Layers.mp4 20.55 MB
06.Going deeper Introduction to deep neural networks/0602.What is a deep net.mp4 32.6 MB
06.Going deeper Introduction to deep neural networks/0603.Understanding deep nets in depth.mp4 58.18 MB
06.Going deeper Introduction to deep neural networks/0604.Why do we need non-linearities.mp4 37.97 MB
06.Going deeper Introduction to deep neural networks/0605.Activation functions.mp4 37.97 MB
06.Going deeper Introduction to deep neural networks/0606.Softmax activation.mp4 24.98 MB
06.Going deeper Introduction to deep neural networks/0607.Backpropagation.mp4 52.73 MB
06.Going deeper Introduction to deep neural networks/0608.Backpropagation - visual representation.mp4 24.39 MB
07.Overfitting/0701.Underfitting and overfitting.mp4 34.06 MB
07.Overfitting/0702.Underfitting and overfitting - classification.mp4 32.48 MB
07.Overfitting/0703.Training and validation.mp4 37.52 MB
07.Overfitting/0704.Training, validation, and test.mp4 31.32 MB
07.Overfitting/0705.N-fold cross validation.mp4 25.57 MB
07.Overfitting/0706.Early stopping.mp4 28.33 MB
08.Initialization/0801.Initialization - Introduction.mp4 26.17 MB
08.Initialization/0802.Types of simple initializations.mp4 12.29 MB
08.Initialization/0803.Xavier initialization.mp4 19.12 MB
09.Gradient descent and learning rates/0901.Stochastic gradient descent.mp4 34.48 MB
09.Gradient descent and learning rates/0902.Gradient descent pitfalls.mp4 14.35 MB
09.Gradient descent and learning rates/0903.Momentum.mp4 18.96 MB
09.Gradient descent and learning rates/0904.Learning rate schedules.mp4 37.08 MB
09.Gradient descent and learning rates/0905.Learning rate schedules. A picture.mp4 10.93 MB
09.Gradient descent and learning rates/0906.Adaptive learning rate schedules.mp4 29.83 MB
09.Gradient descent and learning rates/0907.Adaptive moment estimation.mp4 29.08 MB
10.Preprocessing/1001.Preprocessing introduction.mp4 25.55 MB
10.Preprocessing/1002.Basic preprocessing.mp4 11.11 MB
10.Preprocessing/1003.Standardization.mp4 40.37 MB
10.Preprocessing/1004.Dealing with categorical data.mp4 18.22 MB
10.Preprocessing/1005.One-hot and binary encoding.mp4 32.26 MB
11.The MNIST example/1101.The dataset.mp4 20.74 MB
11.The MNIST example/1102.How to tackle the MNIST.mp4 33.29 MB
11.The MNIST example/1103.Importing the relevant packages and load the data.mp4 15.85 MB
11.The MNIST example/1104.Preprocess the data - create a validation dataset and scale the data.mp4 27.05 MB
11.The MNIST example/1105.Preprocess the data - shuffle and batch the data.mp4 36.58 MB
11.The MNIST example/1106.Outline the model.mp4 27.36 MB
11.The MNIST example/1107.Select the loss and the optimizer.mp4 12.71 MB
11.The MNIST example/1108.Learning.mp4 20.43 MB
11.The MNIST example/1109.Testing the model.mp4 15.26 MB
12.Business case/1201.Exploring the dataset and identifying predictors.mp4 30.16 MB
12.Business case/1202.Outlining the business case solution.mp4 9.52 MB
12.Business case/1203.Balancing the dataset.mp4 13.75 MB
12.Business case/1204.Preprocessing the data.mp4 44.52 MB
12.Business case/1205.Load the preprocessed data.mp4 18.22 MB
12.Business case/1206.Learning and interpreting the result.mp4 26.4 MB
12.Business case/1207.Setting an early stopping mechanism.mp4 21.45 MB
12.Business case/1208.Testing the model.mp4 9.63 MB
13.Conclusion/1301.See how much you have learned.mp4 38.88 MB
13.Conclusion/1302.What's further out there in the machine and deep learning world.mp4 17.51 MB
13.Conclusion/1303.An overview of CNNs.mp4 18.62 MB
13.Conclusion/1304.An overview of RNNs.mp4 27.42 MB
13.Conclusion/1305.An overview of non-NN approaches.mp4 40.17 MB
其他位置