zhongziso种子搜
首页
功能
磁力转BT
BT转磁力
使用教程
免责声明
关于
zhongziso
搜索
[GigaCourse.Com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
magnet:?xt=urn:btih:ce9f78f66c8fee6ff002f4129bc938d7d1e6cb6d&dn=[GigaCourse.Com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
磁力链接详情
Hash值:
ce9f78f66c8fee6ff002f4129bc938d7d1e6cb6d
点击数:
149
文件大小:
6.57 GB
文件数量:
293
创建日期:
2022-11-14 09:17
最后访问:
2025-1-7 20:13
访问标签:
GigaCourse
Com
Udemy
-
2022
Machine
Learning
and
Deep
Learning
Bootcamp
in
Python
文件列表详情
01 - Introduction/001 Introduction.mp4 25.85 MB
02 - Environment Setup/003 Installing TensorFlow and Keras.mp4 9.7 MB
03 - Artificial Intelligence Basics/001 Why to learn artificial intelligence and machine learning.mp4 14.01 MB
03 - Artificial Intelligence Basics/002 Types of artificial intelligence learning.mp4 36.97 MB
03 - Artificial Intelligence Basics/003 Fundamentals of statistics.mp4 33.22 MB
05 - Linear Regression/001 What is linear regression.mp4 39.99 MB
05 - Linear Regression/002 Linear regression theory - optimization.mp4 45.04 MB
05 - Linear Regression/003 Linear regression theory - gradient descent.mp4 39.45 MB
05 - Linear Regression/004 Linear regression implementation I.mp4 90.81 MB
05 - Linear Regression/005 Linear regression implementation II.mp4 12.2 MB
06 - Logistic Regression/001 What is logistic regression.mp4 40.2 MB
06 - Logistic Regression/002 Logistic regression and maximum likelihood estimation.mp4 22.68 MB
06 - Logistic Regression/003 Logistic regression example I - sigmoid function.mp4 33.18 MB
06 - Logistic Regression/004 Logistic regression example II- credit scoring.mp4 58.55 MB
06 - Logistic Regression/005 Logistic regression example III - credit scoring.mp4 33.52 MB
07 - Cross Validation/001 What is cross validation.mp4 24.41 MB
07 - Cross Validation/002 Cross validation example.mp4 25.13 MB
08 - K-Nearest Neighbor Classifier/001 What is the k-nearest neighbor classifier.mp4 13.69 MB
08 - K-Nearest Neighbor Classifier/002 Concept of lazy learning.mp4 15.24 MB
08 - K-Nearest Neighbor Classifier/003 Distance metrics - Euclidean-distance.mp4 21.73 MB
08 - K-Nearest Neighbor Classifier/004 Bias and variance trade-off.mp4 14.7 MB
08 - K-Nearest Neighbor Classifier/005 K-nearest neighbor implementation I.mp4 16.5 MB
08 - K-Nearest Neighbor Classifier/006 K-nearest neighbor implementation II.mp4 48.51 MB
08 - K-Nearest Neighbor Classifier/007 K-nearest neighbor implementation III.mp4 10.53 MB
09 - Naive Bayes Classifier/001 What is the naive Bayes classifier.mp4 42.38 MB
09 - Naive Bayes Classifier/002 Naive Bayes classifier illustration.mp4 9.23 MB
09 - Naive Bayes Classifier/003 Naive Bayes classifier implementation.mp4 11.08 MB
09 - Naive Bayes Classifier/004 What is text clustering.mp4 38.5 MB
09 - Naive Bayes Classifier/005 Text clustering - inverse document frequency (TF-IDF).mp4 14.61 MB
09 - Naive Bayes Classifier/006 Naive Bayes example - clustering news.mp4 78.91 MB
10 - Support Vector Machines (SVMs)/001 What are Support Vector Machines (SVMs).mp4 20.14 MB
10 - Support Vector Machines (SVMs)/002 Linearly separable problems.mp4 30.33 MB
10 - Support Vector Machines (SVMs)/003 Non-linearly separable problems.mp4 22.96 MB
10 - Support Vector Machines (SVMs)/004 Kernel functions.mp4 34.1 MB
10 - Support Vector Machines (SVMs)/005 Support vector machine example I - simple.mp4 36.79 MB
10 - Support Vector Machines (SVMs)/006 Support vector machine example II - iris dataset.mp4 15.1 MB
10 - Support Vector Machines (SVMs)/007 Support vector machines example III - parameter tuning.mp4 17.83 MB
10 - Support Vector Machines (SVMs)/008 Support vector machine example IV - digit recognition.mp4 22.1 MB
10 - Support Vector Machines (SVMs)/009 Support vector machine example V - digit recognition.mp4 14.49 MB
10 - Support Vector Machines (SVMs)/010 Advantages and disadvantages.mp4 6 MB
11 - Decision Trees/001 Decision trees introduction - basics.mp4 27.41 MB
11 - Decision Trees/002 Decision trees introduction - entropy.mp4 40.84 MB
11 - Decision Trees/003 Decision trees introduction - information gain.mp4 38.24 MB
11 - Decision Trees/004 The Gini-index approach.mp4 20.11 MB
11 - Decision Trees/005 Decision trees introduction - pros and cons.mp4 5.74 MB
11 - Decision Trees/006 Decision trees implementation I.mp4 13.18 MB
11 - Decision Trees/007 Decision trees implementation II - parameter tuning.mp4 14.09 MB
11 - Decision Trees/008 Decision tree implementation III - identifying cancer.mp4 32.45 MB
12 - Random Forest Classifier/001 Pruning introduction.mp4 15.47 MB
12 - Random Forest Classifier/002 Bagging introduction.mp4 16.08 MB
12 - Random Forest Classifier/003 Random forest classifier introduction.mp4 12.29 MB
12 - Random Forest Classifier/004 Random forests example I - iris dataset.mp4 13.5 MB
12 - Random Forest Classifier/005 Random forests example II - credit scoring.mp4 9.94 MB
12 - Random Forest Classifier/006 Random forests example III - OCR parameter tuning.mp4 31.9 MB
13 - Boosting/001 Boosting introduction - basics.mp4 15.75 MB
13 - Boosting/002 Boosting introduction - illustration.mp4 11.17 MB
13 - Boosting/003 Boosting introduction - equations.mp4 13.42 MB
13 - Boosting/004 Boosting introduction - final formula.mp4 36.78 MB
13 - Boosting/005 Boosting implementation I - iris dataset.mp4 31.13 MB
13 - Boosting/006 Boosting implementation II -wine classification.mp4 38.65 MB
13 - Boosting/007 Boosting vs. bagging.mp4 6.87 MB
14 - Principal Component Analysis (PCA)/001 Principal component analysis (PCA) introduction.mp4 38.24 MB
14 - Principal Component Analysis (PCA)/002 Principal component analysis example.mp4 26.79 MB
14 - Principal Component Analysis (PCA)/003 Principal component analysis example II.mp4 22.27 MB
15 - Clustering/001 K-means clustering introduction.mp4 16.62 MB
15 - Clustering/002 K-means clustering example.mp4 19.52 MB
15 - Clustering/003 K-means clustering - text clustering.mp4 37.68 MB
15 - Clustering/004 DBSCAN introduction.mp4 11.37 MB
15 - Clustering/005 DBSCAN example.mp4 21.15 MB
15 - Clustering/006 Hierarchical clustering introduction.mp4 16.58 MB
15 - Clustering/007 Hierarchical clustering example.mp4 20.36 MB
15 - Clustering/008 Hierarchical clustering - market segmentation.mp4 29 MB
16 - Machine Learning Project I - Face Recognition/001 The Olivetti dataset.mp4 22.83 MB
16 - Machine Learning Project I - Face Recognition/002 Understanding the dataset.mp4 45.89 MB
16 - Machine Learning Project I - Face Recognition/003 Finding optimal number of principal components (eigenvectors).mp4 23.63 MB
16 - Machine Learning Project I - Face Recognition/004 Understanding eigenfaces.mp4 62.97 MB
16 - Machine Learning Project I - Face Recognition/005 Constructing the machine learning models.mp4 13.36 MB
16 - Machine Learning Project I - Face Recognition/006 Using cross-validation.mp4 21.97 MB
18 - Feed-Forward Neural Network Theory/001 Artificial neural networks - inspiration.mp4 24.16 MB
18 - Feed-Forward Neural Network Theory/002 Artificial neural networks - layers.mp4 11.03 MB
18 - Feed-Forward Neural Network Theory/003 Artificial neural networks - the model.mp4 21.55 MB
18 - Feed-Forward Neural Network Theory/004 Why to use activation functions.mp4 28.39 MB
18 - Feed-Forward Neural Network Theory/005 Neural networks - the big picture.mp4 34.99 MB
18 - Feed-Forward Neural Network Theory/006 Using bias nodes in the neural network.mp4 4.32 MB
18 - Feed-Forward Neural Network Theory/007 How to measure the error of the network.mp4 12.03 MB
18 - Feed-Forward Neural Network Theory/008 Optimization with gradient descent.mp4 39.92 MB
18 - Feed-Forward Neural Network Theory/009 Gradient descent with backpropagation.mp4 24.2 MB
18 - Feed-Forward Neural Network Theory/010 Backpropagation explained.mp4 46.26 MB
19 - Single Layer Networks Implementation/001 Simple neural network implementation - XOR problem.mp4 36.7 MB
19 - Single Layer Networks Implementation/002 Simple neural network implementation - Iris dataset.mp4 84.96 MB
19 - Single Layer Networks Implementation/003 Credit scoring with simple neural networks.mp4 23.17 MB
20 - Deep Learning/001 Types of neural networks.mp4 8.01 MB
21 - Deep Neural Networks Theory/001 Deep neural networks.mp4 9.28 MB
21 - Deep Neural Networks Theory/002 Activation functions revisited.mp4 26.21 MB
21 - Deep Neural Networks Theory/003 Loss functions.mp4 15.42 MB
21 - Deep Neural Networks Theory/004 Gradient descent and stochastic gradient descent.mp4 40.09 MB
21 - Deep Neural Networks Theory/005 Hyperparameters.mp4 26.92 MB
22 - Deep Neural Networks Implementation/001 Deep neural network implementation I.mp4 17.33 MB
22 - Deep Neural Networks Implementation/002 Deep neural network implementation II.mp4 18.9 MB
22 - Deep Neural Networks Implementation/003 Deep neural network implementation III.mp4 26.09 MB
22 - Deep Neural Networks Implementation/004 Multiclass classification implementation I.mp4 28.48 MB
22 - Deep Neural Networks Implementation/005 Multiclass classification implementation II.mp4 26.72 MB
23 - Machine Learning Project II - Smile Detector/001 Understanding the classification problem.mp4 4.78 MB
23 - Machine Learning Project II - Smile Detector/002 Reading the images and constructing the dataset I.mp4 25.08 MB
23 - Machine Learning Project II - Smile Detector/003 Reading the images and constructing the dataset II.mp4 38.06 MB
23 - Machine Learning Project II - Smile Detector/004 Building the deep neural network model.mp4 9.55 MB
23 - Machine Learning Project II - Smile Detector/005 Evaluating and testing the model.mp4 12.52 MB
24 - Convolutional Neural Networks (CNNs) Theory/001 Convolutional neural networks basics.mp4 25 MB
24 - Convolutional Neural Networks (CNNs) Theory/002 Feature selection.mp4 12.15 MB
24 - Convolutional Neural Networks (CNNs) Theory/003 Convolutional neural networks - kernel.mp4 8.9 MB
24 - Convolutional Neural Networks (CNNs) Theory/004 Convolutional neural networks - kernel II.mp4 8.88 MB
24 - Convolutional Neural Networks (CNNs) Theory/005 Convolutional neural networks - pooling.mp4 25.58 MB
24 - Convolutional Neural Networks (CNNs) Theory/006 Convolutional neural networks - flattening.mp4 26.77 MB
24 - Convolutional Neural Networks (CNNs) Theory/007 Convolutional neural networks - illustration.mp4 31.87 MB
25 - Convolutional Neural Networks (CNNs) Implementation/001 Handwritten digit classification I.mp4 54.32 MB
25 - Convolutional Neural Networks (CNNs) Implementation/002 Handwritten digit classification II.mp4 55.59 MB
25 - Convolutional Neural Networks (CNNs) Implementation/003 Handwritten digit classification III.mp4 35.17 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/001 What is the CIFAR-10 dataset.mp4 36.07 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/002 Preprocessing the data.mp4 7.66 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/003 Fitting the model.mp4 43.65 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/004 Tuning the parameters - regularization.mp4 60.49 MB
27 - Recurrent Neural Networks (RNNs) Theory/001 Why do recurrent neural networks are important.mp4 21.3 MB
27 - Recurrent Neural Networks (RNNs) Theory/002 Recurrent neural networks basics.mp4 28.63 MB
27 - Recurrent Neural Networks (RNNs) Theory/003 Vanishing and exploding gradients problem.mp4 27.18 MB
27 - Recurrent Neural Networks (RNNs) Theory/004 Long-short term memory (LSTM) model.mp4 33.39 MB
27 - Recurrent Neural Networks (RNNs) Theory/005 Gated recurrent units (GRUs).mp4 6.41 MB
28 - Recurrent Neural Networks (RNNs) Implementation/001 Time series analysis example I.mp4 14.07 MB
28 - Recurrent Neural Networks (RNNs) Implementation/002 Time series analysis example II.mp4 13.04 MB
28 - Recurrent Neural Networks (RNNs) Implementation/003 Time series analysis example III.mp4 20.06 MB
28 - Recurrent Neural Networks (RNNs) Implementation/004 Time series analysis example IV.mp4 8.46 MB
28 - Recurrent Neural Networks (RNNs) Implementation/005 Time series analysis example V.mp4 14.59 MB
28 - Recurrent Neural Networks (RNNs) Implementation/006 Time series analysis example VI.mp4 12.37 MB
29 - ### REINFORCEMENT LEARNING ###/002 Applications of reinforcement learning.mp4 6.6 MB
30 - Markov Decision Process (MDP) Theory/001 Markov decision processes basics I.mp4 23.2 MB
30 - Markov Decision Process (MDP) Theory/002 Markov decision processes basics II.mp4 14.15 MB
30 - Markov Decision Process (MDP) Theory/003 Markov decision processes - equations.mp4 49.65 MB
30 - Markov Decision Process (MDP) Theory/004 Markov decision processes - illustration.mp4 28.22 MB
30 - Markov Decision Process (MDP) Theory/005 Bellman-equation.mp4 15.43 MB
30 - Markov Decision Process (MDP) Theory/006 How to solve MDP problems.mp4 5.7 MB
30 - Markov Decision Process (MDP) Theory/007 What is value iteration.mp4 24.23 MB
30 - Markov Decision Process (MDP) Theory/008 What is policy iteration.mp4 6.98 MB
31 - Exploration vs. Exploitation Problem/001 Exploration vs exploitation problem.mp4 7.65 MB
31 - Exploration vs. Exploitation Problem/002 N-armed bandit problem introduction.mp4 19.56 MB
31 - Exploration vs. Exploitation Problem/003 N-armed bandit problem implementation.mp4 53.31 MB
31 - Exploration vs. Exploitation Problem/004 Applications AB testing in marketing.mp4 12.13 MB
32 - Q Learning Theory/001 What is Q learning.mp4 11.79 MB
32 - Q Learning Theory/002 Q learning introduction - the algorithm.mp4 15.46 MB
32 - Q Learning Theory/003 Q learning illustration.mp4 21.44 MB
33 - Q Learning Implementation (Tic Tac Toe)/001 Tic tac toe with Q learning implementation I.mp4 16.78 MB
33 - Q Learning Implementation (Tic Tac Toe)/002 Tic tac toe with Q learning implementation II.mp4 19.81 MB
33 - Q Learning Implementation (Tic Tac Toe)/003 Tic tac toe with Q learning implementation III.mp4 26.25 MB
33 - Q Learning Implementation (Tic Tac Toe)/004 Tic tac toe with Q learning implementation IV.mp4 46.16 MB
33 - Q Learning Implementation (Tic Tac Toe)/005 Tic tac toe with Q learning implementation V.mp4 21.72 MB
33 - Q Learning Implementation (Tic Tac Toe)/006 Tic tac toe with Q learning implementation VI.mp4 99.45 MB
33 - Q Learning Implementation (Tic Tac Toe)/007 Tic tac toe with Q learning implementation VII.mp4 49.8 MB
33 - Q Learning Implementation (Tic Tac Toe)/008 Tic tac toe with Q learning implementation VIII.mp4 49.82 MB
34 - Deep Q Learning Theory/001 What is deep Q learning.mp4 9.29 MB
34 - Deep Q Learning Theory/003 Remember and replay.mp4 7 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/001 Tic Tac Toe with deep Q learning implementation I.mp4 21.12 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/002 Tic Tac Toe with deep Q learning implementation II.mp4 40.62 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/003 Tic Tac Toe with deep Q learning implementation III.mp4 74.29 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/004 Tic Tac Toe with deep Q learning implementation IV.mp4 15.43 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/005 Tic Tac Toe with deep Q learning implementation V.mp4 31.32 MB
36 - ### COMPUTER VISION ###/001 Evolution of computer vision related algorithms.mp4 8.68 MB
37 - Handling Images and Pixels/001 Images and pixel intensities.mp4 10.74 MB
37 - Handling Images and Pixels/002 Handling pixel intensities I.mp4 34.64 MB
37 - Handling Images and Pixels/003 Handling pixel intensities II.mp4 13.21 MB
37 - Handling Images and Pixels/004 Why convolution is so important in image processing.mp4 38.48 MB
37 - Handling Images and Pixels/005 Image processing - blur operation.mp4 12.67 MB
37 - Handling Images and Pixels/006 Image processing - edge detection kernel.mp4 14.58 MB
37 - Handling Images and Pixels/007 Image processing - sharpen operation.mp4 9.03 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/001 Lane detection - the problem.mp4 4.41 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/002 Lane detection - handling videos.mp4 13.69 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/003 Lane detection - first transformations.mp4 11.94 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/004 What is Canny edge detection.mp4 16.43 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/005 Getting the useful region of the image - masking.mp4 64.74 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/006 Detecting lines - what is Hough transformation.mp4 45 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/008 Drawing lines on video frames.mp4 32.69 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/009 Testing lane detection algorithm.mp4 16.08 MB
39 - Viola-Jones Face Detection Algorithm Theory/001 Viola-Jones algorithm.mp4 40.92 MB
39 - Viola-Jones Face Detection Algorithm Theory/002 Haar-features.mp4 22.13 MB
39 - Viola-Jones Face Detection Algorithm Theory/003 Integral images.mp4 24.53 MB
39 - Viola-Jones Face Detection Algorithm Theory/004 Boosting in computer vision.mp4 23.41 MB
39 - Viola-Jones Face Detection Algorithm Theory/005 Cascading.mp4 9.88 MB
40 - Face Detection with Viola-Jones Method Implementation/001 Face detection implementation I - installing OpenCV.mp4 7.64 MB
40 - Face Detection with Viola-Jones Method Implementation/002 Face detection implementation II - CascadeClassifier.mp4 70.68 MB
40 - Face Detection with Viola-Jones Method Implementation/003 Face detection implementation III - CascadeClassifier parameters.mp4 18.36 MB
40 - Face Detection with Viola-Jones Method Implementation/004 Face detection implementation IV - tuning the parameters.mp4 18 MB
40 - Face Detection with Viola-Jones Method Implementation/005 Face detection implementation V - detecting faces real-time.mp4 18.85 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/001 Histogram of oriented gradients basics.mp4 19.24 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/002 Histogram of oriented gradients - gradient kernel.mp4 30.56 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/003 Histogram of oriented gradients - magnitude and angle.mp4 33.92 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/004 Histogram of oriented gradients - normalization.mp4 22.59 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/005 Histogram of oriented gradients - big picture.mp4 7.84 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/001 Showing the HOG features programatically.mp4 53.4 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/002 Face detection with HOG implementation I.mp4 15.45 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/003 Face detection with HOG implementation II.mp4 52.33 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/004 Face detection with HOG implementation III.mp4 36.08 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/005 Face detection with HOG implementation IV.mp4 32.31 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/001 The standard convolutional neural network (CNN) way.mp4 18.36 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/002 Region proposals and convolutional neural networks (CNNs).mp4 60.62 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/003 Detecting bounding boxes with regression.mp4 22.1 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/004 What is the Fast R-CNN model.mp4 6.42 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/005 What is the Faster R-CNN model.mp4 3.97 MB
44 - You Only Look Once (YOLO) Algorithm Theory/001 What is the YOLO approach.mp4 12.37 MB
44 - You Only Look Once (YOLO) Algorithm Theory/002 YOLO algorithm - grid cells.mp4 38.38 MB
44 - You Only Look Once (YOLO) Algorithm Theory/003 YOLO algorithm - intersection over union.mp4 51.4 MB
44 - You Only Look Once (YOLO) Algorithm Theory/004 How to train the YOLO algorithm.mp4 25.08 MB
44 - You Only Look Once (YOLO) Algorithm Theory/005 YOLO algorithm - loss function.mp4 16.29 MB
44 - You Only Look Once (YOLO) Algorithm Theory/006 YOLO algorithm - non-max suppression.mp4 9.12 MB
44 - You Only Look Once (YOLO) Algorithm Theory/007 Why to use the so-called anchor boxes.mp4 19.94 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/001 YOLO algorithm implementation I.mp4 22.81 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/002 YOLO algorithm implementation II.mp4 23.78 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/003 YOLO algorithm implementation III.mp4 24.71 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/004 YOLO algorithm implementation IV.mp4 69.67 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/005 YOLO algorithm implementation V.mp4 95.8 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/006 YOLO algorithm implementation VI.mp4 7.3 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/007 YOLO algorithm implementation VII.mp4 27.94 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/001 What is the SSD algorithm.mp4 18.05 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/002 Basic concept behind SSD algorithm (architecture).mp4 43.48 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/003 Bounding boxes and anchor boxes.mp4 70.53 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/004 Feature maps and convolution layers.mp4 13.86 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/005 Hard negative mining during training.mp4 6.12 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/006 Regularization (data augmentation) and non-max suppression during training.mp4 6.87 MB
47 - SSD Algorithm Implementation/001 SSD implementation I.mp4 30.89 MB
47 - SSD Algorithm Implementation/002 SSD implementation II.mp4 6.37 MB
47 - SSD Algorithm Implementation/003 SSD implementation III.mp4 18.84 MB
47 - SSD Algorithm Implementation/004 SSD implementation IV.mp4 50.57 MB
47 - SSD Algorithm Implementation/005 SSD implementation V.mp4 14.99 MB
48 - ### PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction.mp4 3.97 MB
49 - Appendix #1 - Python Basics/001 First steps in Python.mp4 7.38 MB
49 - Appendix #1 - Python Basics/002 What are the basic data types.mp4 7.7 MB
49 - Appendix #1 - Python Basics/003 Booleans.mp4 3.52 MB
49 - Appendix #1 - Python Basics/004 Strings.mp4 14.57 MB
49 - Appendix #1 - Python Basics/005 String slicing.mp4 12.66 MB
49 - Appendix #1 - Python Basics/006 Type casting.mp4 8.18 MB
49 - Appendix #1 - Python Basics/007 Operators.mp4 10.69 MB
49 - Appendix #1 - Python Basics/008 Conditional statements.mp4 8.57 MB
49 - Appendix #1 - Python Basics/009 How to use multiple conditions.mp4 15.96 MB
49 - Appendix #1 - Python Basics/010 Logical operators.mp4 8.05 MB
49 - Appendix #1 - Python Basics/011 Loops - for loop.mp4 9.56 MB
49 - Appendix #1 - Python Basics/012 Loops - while loop.mp4 7.55 MB
49 - Appendix #1 - Python Basics/013 What are nested loops.mp4 5.95 MB
49 - Appendix #1 - Python Basics/014 Enumerate.mp4 7.69 MB
49 - Appendix #1 - Python Basics/015 Break and continue.mp4 9.92 MB
49 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers.mp4 4.02 MB
50 - Appendix #2 - Functions/001 What are functions.mp4 8.09 MB
50 - Appendix #2 - Functions/002 Defining functions.mp4 9.6 MB
50 - Appendix #2 - Functions/003 Positional arguments and keyword arguments.mp4 22.2 MB
50 - Appendix #2 - Functions/004 Returning values.mp4 4.11 MB
50 - Appendix #2 - Functions/005 Returning multiple values.mp4 6 MB
50 - Appendix #2 - Functions/006 Yield operator.mp4 9.15 MB
50 - Appendix #2 - Functions/007 Local and global variables.mp4 4.25 MB
50 - Appendix #2 - Functions/008 What are the most relevant built-in functions.mp4 7.63 MB
50 - Appendix #2 - Functions/009 What is recursion.mp4 17.38 MB
50 - Appendix #2 - Functions/010 Local vs global variables.mp4 7.83 MB
50 - Appendix #2 - Functions/011 The __main__ function.mp4 7.33 MB
51 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms.mp4 18.29 MB
51 - Appendix #3 - Data Structures in Python/002 Data structures introduction.mp4 6.72 MB
51 - Appendix #3 - Data Structures in Python/003 What are array data structures I.mp4 12.26 MB
51 - Appendix #3 - Data Structures in Python/004 What are array data structures II.mp4 12.3 MB
51 - Appendix #3 - Data Structures in Python/005 Lists in Python.mp4 10.51 MB
51 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations.mp4 18.63 MB
51 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension.mp4 11.39 MB
51 - Appendix #3 - Data Structures in Python/009 What are tuples.mp4 7.52 MB
51 - Appendix #3 - Data Structures in Python/010 Mutability and immutability.mp4 8.7 MB
51 - Appendix #3 - Data Structures in Python/011 What are linked list data structures.mp4 20.75 MB
51 - Appendix #3 - Data Structures in Python/012 Doubly linked list implementation in Python.mp4 11.44 MB
51 - Appendix #3 - Data Structures in Python/013 Hashing and O(1) running time complexity.mp4 23.11 MB
51 - Appendix #3 - Data Structures in Python/014 Dictionaries in Python.mp4 19.44 MB
51 - Appendix #3 - Data Structures in Python/015 Sets in Python.mp4 26.05 MB
51 - Appendix #3 - Data Structures in Python/016 Sorting.mp4 23.77 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP).mp4 5.23 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics.mp4 5.39 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor.mp4 17.82 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables.mp4 14.67 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling.mp4 15.3 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP.mp4 8.13 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword.mp4 9.13 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override.mp4 6.46 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism.mp4 16.18 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example.mp4 13.72 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules.mp4 11.04 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function.mp4 7.67 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions.mp4 17.11 MB
53 - Appendix #5 - NumPy/001 What is the key advantage of NumPy.mp4 8.16 MB
53 - Appendix #5 - NumPy/002 Creating and updating arrays.mp4 16.76 MB
53 - Appendix #5 - NumPy/003 Dimension of arrays.mp4 18.44 MB
53 - Appendix #5 - NumPy/004 Indexes and slicing.mp4 16.72 MB
53 - Appendix #5 - NumPy/005 Types.mp4 9.92 MB
53 - Appendix #5 - NumPy/006 Reshape.mp4 16.97 MB
53 - Appendix #5 - NumPy/007 Stacking and merging arrays.mp4 21.95 MB
53 - Appendix #5 - NumPy/008 Filter.mp4 7.65 MB
其他位置